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ABSTRACT

Upper Colorado River basin streamflow has declined by roughly 20% over the last century of the in-

strumental period, based on estimates of naturalized flow above Lees Ferry. Here we assess factors causing

the decline and evaluate the premise that rising surface temperatures have been mostly responsible. We use

an event attribution framework involving parallel sets of global model experiments with and without climate

change drivers. We demonstrate that climate change forcing has acted to reduce Upper Colorado River basin

streamflow during this period by about 10% (with uncertainty range of 6%–14% reductions). The magnitude

of the observed flow decline is found to be inconsistent with natural variability alone, and approximately one-

half of the observed flow decline is judged to have resulted from long-term climate change. Each of three

different global models used herein indicates that climate change forcing during the last century has acted to

increase surface temperature (;11.28C) and decrease precipitation (;23%). Using large ensemble

methods, we diagnose the separate effects of temperature and precipitation changes on Upper Colorado

River streamflow. Precipitation change is found to be the most consequential factor owing to its amplified

impact on flow resulting from precipitation elasticity (percent change in streamflow per percent change in

precipitation) of;2.We confirm that warming has also driven streamflow declines, as inferred from empirical

studies, although operating as a secondary factor. Our finding of a modest 22.5% 8C21 temperature sensi-

tivity, on the basis of our best model-derived estimate, indicates that only about one-third of the attributable

climate change signal in Colorado River decline resulted from warming, whereas about two-thirds resulted

from precipitation decline.

1. Introduction

Colorado River streamflow has fallen substantially

during the period of the instrumental record. A linear

trend of Upper Colorado River Commission natural-

ized Lees Ferry flow over 1896–2018 indicates a 20%

decline (Fig. 1). For 1906–2018, a span over which the
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U.S. Bureau of Reclamation has also produced a nat-

uralized flow record, a 24% decline is indicated by both

datasets. The Lees Ferry stream gauge measures sur-

face water flow accumulated from tributaries draining

the Upper Colorado River basin (UCRB), and this

upper reach contains the principal headwaters that

account for almost 90% of total Colorado River ba-

sin streamflow (Jacobs 2011). Its decrease, cou-

pled with recent demand for water eclipsing supply

(Rajagopalan et al. 2009), is thus of concern to large

parts of the southwesternUnited States andMexico sharing

water under the Law of the River for which the Colorado

River Compact is cornerstone (https://www.usbr.gov/lc/

region/g1000/lawofrvr.html).

One hypothesis for secular decline in the instrumental

period1—initially proposed 40 years ago (Stockton and

Boggess 1979; Revelle and Waggoner 1983) and recently

resurrected (Hoerling andEischeid 2007;Woodhouse et al.

2016; Udall and Overpeck 2017; McCabe et al. 2017)—

holds that Colorado River streamflow is highly sensitive to

temperature such that warming appreciably reduces flow

volumes. A warming over the last century (Fig. 1) in the

UCRB (Hoerling et al. 2013; Lukas et al. 2014) has itself

been linked to anthropogenic climate change, inducing ari-

dification across the greater U.S. Southwest (Seager et al.

2007; Cook et al. 2015). A hypothesis that argues for strong

temperature effects on historical Colorado River flow is

thus a portent for future severe declines owing to high

confidence thatwarmingwill continue tooccur (IPCC2013).

Guidance on future Colorado River flows thus rests

heavily on explaining its decline in the instrumental

period, and especially on determining its sensitivity to

temperature. However, the magnitude of that sensitivity

remains highly uncertain despite a relatively long history

of studies on the problem mentioned above. Wide

ranging estimates exist that speak to complications in

deciphering empirical results and to difficulties in

interpretingmodel-based studies. For instance, different

land surface model (LSM) simulations indicate Colo-

rado River flow might decline as little as 3% or per-

haps as much as 8% per degree Celsius of warming

(Christensen et al. 2004; Christensen and Lettenmaier

FIG. 1. Time series of annual (top) naturalized Lees Ferry streamflow (maf), (middle)

UCRB-averaged surface air temperature (8C), and (bottom) UCRB-averaged precipitation

(mm). Period is for the water-years 1896–2018. Streamflow is based on the Colorado River

Commission data; temperature and precipitation data are based on Vose et al. (2014) gridded

analyses. All anomalies are computed relative to a 1981–2010 reference. The 1981–2010 cli-

matological means are indicated in the upper-left portion of each plot.

1 Early attempts at reconstructing Lees Ferry flow (LaRue et al.

1925; see also Meko et al. 2007) suggested that the decade of the

1880s may have had flow volumes as low as those in the 2000s

decade, implying that the historical trend of Lees Ferry naturalized

flow over a period of 1880–present may actually reveal less decline

than during the instrumental record. Yet, LaRue’s reconstruction

also paints a picture of large decadal variability in the nineteenth

century, with indications that the decade of the 1860s may have

been even wetter than before the compact.
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2007; Vano et al. 2012, 2014). Empirical studies suggest

sensitivities from 210% to 215% 8C21 (Revelle and

Waggoner 1983; Nowak et al. 2012; McCabe et al. 2017),

although sparse observations and sampling variability

lead to large error bars in attributing effects of meteo-

rological drivers (temperature and precipitation) on

streamflow variability (Milly and Dunne 2002). In a

different approach to this problem, an extension of the

theory encapsulated byBudyko (1974) on climatological

water and energy balances indicates low sensitivity of

streamflow to temperature, almost never exceeding

about24% 8C21 (Milly et al. 2018). Suffice it to say that

expectations for severe late twenty-first-century declines

in Colorado River flow would be warranted if sensitivity

to temperature reaches the high end of these estimates.

Here, we apply new methods to test hypotheses of

causality and especially the proposition for a large tem-

perature role in Colorado River–climate linkages. We

employ an event attribution framework that has been

previously used to quantify climate change effects on

weather extremes (National Academies of Sciences,

Engineering, and Medicine 2016). As described in section

2, this involves a dynamical modeling approach whereby

large ensembles of simulations from multiple atmosphere/

land models are subjected to various drivers selected to

distinguish effects of climate change from natural vari-

ability. The approach is in analogy with epidemiology

wherein determinants of disease in human populations are

of interest, and possible cures are evaluated by comparing

two population samples, with one subjected to a potential

curing drug and the other given a placebo. In our hydro-

climate study, the placebo population consists of experi-

ments without global warming influence, referred to as

counterfactual experiments, whose statistics are compared

with a second set of runs incorporating all current forcings

(factual experiments). Our model experiments are con-

ducted globally, recognizing that UCRB hydrology re-

sponds to worldwide drivers such as naturally occurring

Pacific andAtlanticOcean variability (McCabe et al. 2004;

Nowak et al. 2012) and to global climate change (Cayan

et al. 2010; Seager and Vecchi 2010).

We address various limitations in prior modeling in-

vestigations of Colorado River streamflow that have

been implicated in the uncertainties of projections

(Vano et al. 2014). First, our experiments are conducted

at the nominally high global 50-km spatial resolution so

as to capture high-elevation sources of runoff pro-

duction with greater fidelity than other general circula-

tion model (GCM)-based studies. Second, the spatial

resolution achieved is fully dynamical in which the at-

mosphere is fully coupled to the land surface. This dif-

fers frompriormethods that used either regional climate

models or statistical downscaling of spatially coarse-grid

GCMs as input to offline hydrology models (Gao

et al. 2011; Christensen et al. 2004; Christensen and

Lettenmaier 2007; Cayan et al. 2010; Vano et al. 2012).

These offline uncoupled hydrologic models, though

powerful tools for downscaling where topographic

complexity is critical, may nonetheless introduce arti-

facts into hydrologic impact assessments from un-

resolved biases in downscaling and also from a distorted

surface energy balance in LSMs that affects evapo-

transpiration (Pierce et al. 2013). Third, in light of con-

siderable differences among LSM responses to identical

meteorological changes, we address the fidelity of the

global models’ various land model components. Fol-

lowing Milly et al. (2005) who studied future streamflow

changes in global models of the Third Assessment of the

Intergovernmental Panel on Climate Change (IPCC),

we appraise in section 3 the climatological UCRB

streamflow in our models. Additionally, a Budyko ap-

proach (Budyko 1974) is applied to appraise the realism

of simulated water and energy balances that control link-

ages between runoff production and aridity in our models.

The latter diagnosis serves to illuminate biases that could

skew the response of streamflow to changes in aridity.

Last, the atmosphere in our experiments is subjected to

specified observed sea surface temperature and sea ice

conditions [Atmosphere Model Intercomparison Project

(AMIP) protocol]. Although not fully coupled to the

ocean as in Climate Model Intercomparison Project

(CMIP) simulations, our experiments incorporate realistic

historical ocean states that are expected to reduce atmo-

spheric biases relative to CMIP.

We present in section 4 the simulated UCRB hydro-

climate responses to historical observed climate change

driving. Using a non-fingerprint-based detection and

attribution method (Wuebbles et al. 2017) that utilizes

our ensemble modeling approach, the observed tem-

perature, precipitation, and streamflow changes over the

UCRB since the early twentieth century are interpreted

in the context of climate change and variability. The

streamflow change is further diagnosed in section 5

within a framework of its sensitivities to separate effects

of surface air temperature and precipitation changes. A

summary and concluding remarks appear in section 6.

2. Datasets and methods

a. Observations

Colorado River naturalized flow is an estimate of

streamflow Q that would exist in a natural state unim-

paired by diversions and withdrawals from human

activities. We use annual water-year (1 October–30

September) estimates of such naturalized (‘‘virgin’’) flow at
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Lees Ferry based on Upper Colorado River Commission

data spanning from 1896 to the present (see http://

www.ucrcommission.com/RepDoc/UCRCAnnualReports/

69_UCRC_Annual_Report.pdf). For the same period,

water-year estimates of surface air temperature T and pre-

cipitation P are based on monthly 5-km gridded analyses

(Vose et al. 2014), coarsened to a 50-kmgrid for comparison

with our climate models. Although it is for a slightly shorter

period (from 1906 to the present), we also use Bureau of

Reclamationnaturalizedflowdata (seehttps://www.usbr.gov/

lc/region/g4000/NaturalFlow/Final-MethodsCmptgNatFlow.

pdf), which includes information for eight subbasin

catchments in the upper basin above Lees Ferry.

Changes in naturalized streamflow, temperature, and

precipitation are calculated as differences between 30-yr

averages for 1981–2010 relative to 1896–1925, the values

of which are 213%, 11.18C, and 11.5%, respectively.2

Uncertainty in estimating precipitation change is partic-

ularly large owing to the strong topographic dependency

of precipitation and the large temporal and spatial in-

homogeneities in observing stations (Milly and Dunne

2002), and this is evident in a comparison among gridded

datasets (Henn et al. 2018). Sampling uncertainty is also

of concern and will be addressed in section 5.

b. Climate models and experiments

Global atmospheric GCMexperiments are diagnosed to

determine UCRB sensitivity to historical changes in cli-

mate drivers. Threemodels are used including theNational

Center for Atmospheric Research Community Atmo-

spheric Model (CAM5; Neale et al. 2012), the European

Centre for Medium-Range Weather Forecasts/Hamburg

model (ECHAM5; Roeckner et al. 2003), and Japan’s

Meteorological Research Institutemodel (MRI3.2;Mizuta

et al. 2017). Each represents comparable horizontal scales

globally (;50 km over the UCRB), whereas they differ

substantially in representation of land surface processes

(see Table 1). Briefly, the CAM5 land model [Community

Land Model, version 4 (CLM4)] is most sophisticated

among the three, explicitly representing biogeophysical

processes including surface radiation interactions with

vegetation, stomatal physiology, and photosynthesis

(Lawrence et al. 2011). The CLM4 includes 10 hydrologi-

cally active soil layers having a uniform depth of 3.8 m for

active hydrology. InECHAM5, a SimpleBiosphereModel

(SiB; Sellers et al. 1986) is used for calculating energy,

mass, and momentum exchange between vegetated land

surface and atmosphere. Its soil hydrology is further

simplified to comprise a single layer of fixed 2-m depth, yet

it allows for subgrid variability in soil infiltration capacity

(Schulz et al. 2001). In MRI3.2, a SiB formulation is also

used although involving three layers of active soil hydrol-

ogy, with the lowermost layer set to 10m (Hirai et al. 2007).

We use the total of the models’ surface runoff and sub-

surface drainage term, that is, all terms that representwater

leaving amodel grid cell into the streamnetwork, which on

climatological time scales is nearly equivalent to stream-

flow. The CAM5 and ECHAM5 runs were performed by

the authors, and the MIR3.2 runs were performed by the

Japanese Meteorological Research Institute.

In the factual experiments, each model is forced by ob-

served monthly SST and sea ice concentration variations

using the boundary data of Hurrell et al. (2008) in CAM5

andECHAM5, andCentennial In SituObservation-Based

Estimates of the Variability of SST and Marine Meteoro-

logical Variables, version 2 (COBE-2; Hirahara et al.

2014), inMRI3.2. Greenhouse gases (GHGs), aerosol, and

ozone variability in CAM5 and MRI3.2 use the corre-

sponding CMIP5 coupledmodel forcing protocols through

2005 (see Neale et al. 2012; Mizuta et al. 2017). For

ECHAM5, GHGs vary according to the observed con-

centrations (Meinshausen et al. 2011), while tropospheric

and stratospheric ozone vary based on Cionni et al. (2011).

Aerosol concentrations do not vary interannually in

ECHAM5. The CAM5 and ECHAM5 extensions after

2005 assume RCP6.0 forcing, while MRI assumes RCP8.5

forcing. The common period of these historical runs is

January 1979–December 2010, and an ensemble of simu-

lations is generated whereby each member of a particular

model experiences identical time evolving boundary forc-

ings but is initialized from different 1 January 1979 atmo-

spheric initial states (see Table 1).

The counterfactual experiments are parallel runs in

which the boundary conditions and atmospheric com-

position are specified as if global warming had not

occurred since roughly preindustrial times. The pro-

cedures follow those used in extreme event attribution

studies (e.g., Pall et al. 2011; Stott et al. 2012; Christidis

et al. 2013, Massey et al. 2015; Sun et al. 2018). The

models are forced with monthly varying boundary

conditions that retain the interannual and decadal

variability that occur in the factual experiment but in

which estimates of long-term ocean warming have

been removed. The GHG and ozone concentrations

TABLE 1. Global atmospheric models used in the current study.

Model Resolution Land model Ensemble size

CAM5 0.458 3 0.68 Biophysical/CLM4 10

ECHAM5 T157 SiB/bucket 30

MRI3.2 60 km SiB, three layers 100

2 Note that the streamflow decline of 13% computed in this

manner is consistent with the linear trend that describes a 20%

decline during 1896–2018 and a 24% decline during 1906–2018.
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are set to late-nineteenth or early-twentieth-century

values. Here, two different techniques are used in con-

structing the ‘‘pre–global warming’’ ocean boundary

states—details of the model configurations and coun-

terfactual development for CAM5 and ECHAM5 are

provided in Sun et al. (2018), and those for MRI3.2

are in Mizuta et al. (2017). Briefly, for CAM5 and

ECHAM5, counterfactual SSTs of 1979–2010 are gen-

erated by removing an observed 1880–2011 annual

linear SST trend from the full variability. Only zon-

ally averaged values of the trends are removed. For

MRI3.2, a similar approach is used in that the SST

warming pattern is also derived from observations ex-

cept that the baseline for detrending is the early twen-

tieth century, and trends at each grid point are removed

rather than zonal averages. These two SST warming

patterns are shown in Fig. 2 of Sun et al. (2018). Their

common features are warming across all zonally aver-

aged latitude bands having magnitudes of ;0.58C. The
regional structure of SST trends is characterized by

greater warming in the Indian Ocean and tropical

western Pacific relative to the tropical eastern Pacific

(see also Solomon and Newman 2012). Note that

removing a zonally averaged SST trend does not alter

the zonal SST gradient present in the actual SSTs,

whereas removing the full-field SST trends can. Given

evidence from previous modeling studies for a consid-

erable sensitivity of western United States precipitation

to changes in the zonal SST gradient over the tropical

Pacific (e.g., Hoerling et al. 2010), the manner in which

the counterfactual SSTs are constructed is expected to

affect the character of Colorado River basin pre-

cipitation. It is unclear what the best approach is for

determining the pattern of global SST warming, and

thus the best procedure for counterfactual construction.

Herein, our use of two different approaches for generating

boundary forcings absent global warming will accommo-

date some of the uncertainty. While noting similarity

in large-scale features of meteorological changes across

our experiments suggesting reproducibility in patterns

(see the online supplemental material) across our three

models, we have not treated the sensitivity of any single

model to different counterfactual constructs and thus do

not completely address the robustness of our results to

various counterfactual approximations (see Christidis

et al. 2013).

c. Diagnosing climate change impacts on UCRB
hydroclimate

For 1981–2010, we calculate the factual minus coun-

terfactual differences of UCRB temperature, precipi-

tation, and runoff to quantify the effects of changes in

climate drivers that have taken place over roughly the

last century. These are compared with observed hydro-

climate differences for 1981–2010 minus 1896–1925.

The ensemble modeling approach permits construc-

tion of a large sample of such centennial changes.

Because the ensemble members are effectively in-

dependent samples of atmospheric variability, any

combination of factual and counterfactual could oc-

cur with equal likelihood. For CAM5, a total of 100

(10 3 10) unique centennial differences are generated,

whereas a total of 900 (30 3 30) and 10 000 (100 3 100)

differences are calculated for ECHAM5 and MRI3.2,

respectively, where the numbers in parentheses denote

the number of factual and counterfactual experiments.

The ensemble mean value of differences estimates the

forced (signal) component of change while the spread

among ensemble members estimates the internal vari-

ability (noise) component. We apply a simple detection

and attribution approach to explaining the character of

observed temperature, precipitation, and streamflow

changes over the last century. The observed changes are

compared with the statistics of simulated changes to

determine the extent to which the former is consistent

with variability that includes or excludes climate change

drivers. This approach is referred to as a nonfingerprint-

based approach to detection and attribution (Wuebbles

et al. 2017). Following Wuebbles et al. (2017), an ob-

served centennial-scale change is judged to have been

detected when its magnitude has less than a 10% prob-

ability of occurring due to internal variability alone. This

represents a detection of the signal with respect to at-

mospheric variability, with the oceanic (SST and sea

ice) variability the same in each run, and as such un-

derestimates the true natural variability. For brevity, the

models are subsequently referred to as CAM, ECHAM,

and MRI.

3. Simulated hydroclimates of the UCRB

Figure 2 compares UCRB observed water-year

(1 October–30 September) temperature (Fig. 2, first

column of top row) and precipitation (Fig. 2, bottom

column of first row) with that simulated in the factual

experiments of each GCM for 1981–2010. The principal

common feature is a topographic organization of tem-

perature and precipitation consisting of cold and wet

conditions over the high-elevation eastern sections. By

comparison, the western and southern lower elevations

are relatively warm and dry. Despite these realistic

spatial patterns in climatological conditions—owing

largely to the models’ topographic fidelity—various

biases are also apparent. Most noteworthy is each

model’s 15%–20% wet bias above the observed basin-

averaged water-year precipitation (Table 2). Each model
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also has a cold bias, ranging from only a few tenths of a

degree Celsius for the CAM and ECHAM to nearly

2.58C for MRI.

Climatological streamflow in each model (com-

puted from the sum of surface runoff and subsurface

drainage contributions as described in section 2) is

also strongly controlled by orography in a manner

broadly consistent with observations (Fig. 3). CAM

and ECHAM generate high flow (nearly 60% of ob-

served total basin flow) in the Yampa–White, Colorado

Headwaters, and Gunnison basins consistent with obser-

vations (first column of top row in Fig. 3, dark blue

shades). By contrast, and somewhat surprisingly given its

otherwise realistic precipitation simulation, MRI (Fig. 3,

top-right panel) fails to simulate appreciable flow in sev-

eral high-elevation eastern catchments. Themodels agree

overall with observations in having low streamflow in the

western (Upper and LowerGreenRiver andDirtyDevil)

catchments. For the basin as a whole, excess streamflow

beyond that observed at Lees Ferry is generated in all

three models, qualitatively consistent with their posi-

tive precipitation biases. Specifically, as summarized in

Table 2, the basin-average annual model streamflow

ranges from 67 mm [totaling 15.3 million acre feet

(hereinafter maf; 1 acre ft 5 1233.5m3) for the basin] in

CAMto 80mm (18.4maf) inECHAM.These compare to

an observed Lees Ferry climatological flow of 64 mm

(14.5 maf).

FIG. 2. UCRB climatological (top) surface temperature (8C) and (bottom) precipitation (mm) for (left) the observations and each of three

AGCMs, for 1981–2010.

TABLE 2. 1981–2010 Climatological temperature (8C), pre-
cipitation (mm), and streamflow (mm) averaged over the UCRB.

Model

Temperature

(8C)
Precipitation

(mm)

Streamflow

(mm)

CAM5 7.0 465 67

ECHAM5 7.1 457 80

MRI3.2 5.0 478 74

Obs 7.4 391 63
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An additional metric of a basin’s hydroclimate is its

streamflow efficiency defined as the ratio of streamflow

to precipitation (Q/P). The observed streamflow effi-

ciency over the UCRB as a whole is 16%, which com-

pares to 14%, 18%, and 15% in CAM, ECHAM, and

MRI, respectively (Fig. 3, bottom). Indicated hereby is

the models’ realism in capturing a highly inefficient

streamflow production over the basin whereby;85% of

total basin precipitation is lost to evapotranspiration.

However, only CAM realistically captures the spatial

heterogeneity in streamflow efficiency, being highest

in the cold/wet eastern subbasins and lowest in the

warm/dry western subbasins. The other models devi-

ate appreciably from this pattern. For instance, while

ECHAM has realistic streamflow efficiency in the east-

ern high-elevation subbasins, the efficiency is equally

(and erroneously) high over the warm/dry western

lower-elevation subbasins. The MRI streamflow frac-

tions in the Colorado Headwaters and Gunnison basins

(;10%) are notably unrealistic when compared with

observations (;25%), despite having realistic pre-

cipitation magnitudes in those areas. This suggests an

important mediating role played by land surface physics

that also determine key features of streamflow. In ad-

dition to these climatological mean statistics, we have

also compared times series of annual Lees Ferry natu-

ralized flows to those simulated in the models. We

confirm that the magnitude of the simulated interannual

streamflow variability in individual model realizations is

comparable to the observed variability during 1981–

2010 (figure not shown).

We further assess the fidelity of GCM land surface

physics using a Budyko framework that quantifies link-

ages between water and energy balances at catchment

FIG. 3. UCRB climatological (top) runoff and (bottom) runoff efficiency for (left) the observations and each of threeAGCMs, for 1981–

2010. Results are plotted at a subbasin scale for the eight principal hydrologic catchments that contribute to UCRB runoff. The runoff

results are expressed as a percentage of each subbasin’s contribution to the total basin runoff. Runoff efficiency, also plotted as a per-

centage, is the ratio of a subbasin’s runoff to its precipitation.
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scales (e.g., Milly 1994; Sankarasubramanian and Vogel

2002; Milly et al. 2018). Figure 4 shows the broad fea-

tures of a basin’s hydroclimate schematically by plotting

the relationship between aridity [the ratio of potential

evapotranspiration to precipitation (PET/P)] against

runoff production [the ratio of actual evapotranspira-

tion to precipitation (AET/P), equal to 1—Q/PwhereQ

is total runoff]. Catchments that are characterized by

large topographic diversity, such as the UCRB, can be

populated by the full spectrum of hydroclimate regimes

identified in the schematic. Small runoff production is

typically associated with high values of PET/P that is

characteristic of more arid regions toward the upper-

right-hand side of the graph. In contrast, large runoff

production is associated with low values of PET/P that is

characteristic of wet regions (both regimes are illus-

trated in Fig. 4 by open circles). The Budyko framework

applied at model gridcell scale across the UCRB thus

yields a powerful process-based indication of hydrologic

realism. However, there is not sufficient streamflow data

at such fine scales to make observational comparisons

with models feasible over the UCRB. Instead we com-

pare GCM results with comparable high spatial resolu-

tion outputs from a hydrologic model [the Variable

Infiltration Capacity (VIC) model; Liang et al. 1994]

that has been driven with observed meteorological in-

puts for the UCRB, akin to using a reanalysis of

streamflow (see the appendix). For the historical period

of 1915–2015, the VIC-simulated annual UCRB runoff

correlates with the naturalized Lees Ferry flow at 0.94,

having a mean flow of 14.3 maf as compared with the

Lees Ferry mean of 14.7 maf (see Fig. A2).

Figure 5 presents the Budyko analysis applied to each

GCM. Starting at the left, CAM (red dots) shows a

similar range to the observationally driven VIC model

distribution affirming the vast contrast in hydroclimates

across theUCRB. The results demonstrate the fidelity of

physical linkages between aridity intensity and stream-

flow in CAM. ECHAM shows a somewhat weaker re-

lationship between aridity and flow, resulting likely from

tributary catchment-scale biases seen in Fig. 3. The MRI

results are notably nonphysical, with several ‘‘humid’’

grid cells (red dots in the upper-left quadrant) generating

almost no flow despite the model’s realistic temperature

and precipitation. Overall, CAM simulates the intrabasin

heterogeneity quite well, elements of which can also be

discerned in the ECHAM simulations (Fig. 5, middle). By

contrast, the actual evapotranspiration ratio in MRI is

least realistic, differing substantially from the VIC results

and also from those of the other two models.

Our working assumption is that models having a more

realistic physical hydrology, as revealed through this

Budyko diagnosis, may exhibitmore realistic streamflow

sensitivities to meteorological change (Milly and Dunne

2011). Guided by the vetting of the models as per

diagnostics in Figs. 2–5, we will emphasize CAM hy-

drologic responses to climate change in subsequent

sections. In contrast, vetting of our GCMs as concerns

the likely realism of meteorological responses to global

warming is less straightforward and less well informed

by assessing climatological biases of UCRB basin tem-

perature and precipitation. We note that contrary to the

very different qualities of land surface models used in

the three GCMs and their distinctly different biases,

their atmospheric components have similar attributes

including high spatial resolutions and a comparable re-

alism of their climatological temperature and pre-

cipitation over the UCRB. None of these latter features

necessarily dictate or discriminate how each model will

respond to climate change forcing. In so far as this

FIG. 4. An illustration of the Budyko framework and its utility

for classifying the climate and hydrologic response of a catch-

ment or model grid cell. Black lines denote theoretical limits of

runoff production as a function of aridity. Blue-shaded areas

have an aridity ratio , 1, meaning precipitation exceeds evap-

orative demand (PET), representative of energy-limited areas

in the western United States: typically, humid coastal or high-

mountain areas. Conversely, the pink shading denotes arid re-

gions with more evaporative demand (PET) than precipitation:

a common low-elevation landscape across much of the in-

termountain west. An important point is that the solid black

circle and arrows depict how changes in vertical position be-

tween two points denote less/more runoff whereas moving right/

left denotes increasing/decreasing aridity, with most points

falling near the green line, which is a theoretical curve (e.g.,

Gentine et al. 2012). The open black circles show positions of

typical landscapes in the western United States. Comparing

CMIP6 simulations with historical observations in this context

will provide a parsimonious process-based evaluation across

multiple dimensions.
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response may involve sensitivity to SST changes, we

have verified that the GCMs exhibit comparably re-

alistic atmospheric responses to the naturally occurring

El Niño phenomenon (see also Zhang et al. 2016, 2018).

Subtleties of global atmospheric biases that may bear

upon the realism of a model’s regional Colorado River

basin responses to climate change cannot be readily

determined, however. We therefore will carry each of

the three model’s temperature and precipitation re-

sponses to global warming forward in the subsequent

evaluation because these will aid in informing the un-

certainty in overall UCRB hydroclimate responses.

4. Simulated hydroclimate response of the UCRB

Figure 6 compares the statistics of UCRB averaged

temperature (top), precipitation (middle), and stream-

flow (bottom) for 30-yr means (1981–2010) of factual

experiments (red curves) to those of counterfactual ex-

periments (blue curves). Differences in model statistics,

for example as revealed by shifts in histograms, indicate

themagnitude of responses to long-term climate change.

As summarized also in Table 3, the effect of such climate

change forcing is to cause temperature rise, precipitation

decrease, and streamflowdecline for theUCRB in each of

our three models.

An important finding is that the detectability of

such signals—indicated by the magnitude of forced

change (differences between factual and counterfac-

tual histograms) relative to internal variability (spread

of the histograms)—differs appreciably among the three

variables. For temperature, a complete separation of

simulated 30-yr averages with and without climate

change forcing is apparent for each model (Fig. 6, top).

The warming signals range from 1.28 to 1.48C and these

are tenfold larger than the spread in statistics of 30-yr

averages (Table 3). The models’ close agreement with

the observed 1.18C warming is thus consistent with

such high signal-to-noise ratios. Our interpretation of

these results is that a climate change–induced warming

signal over the last century is highly detectable in the

UCRB with respect to atmospheric variability, and that

the observational analysis has indeed detected such

warming.

The signal-to-noise ratio for precipitation change is

much smaller, on the order of 1 relative to 10 for tem-

perature. The signals range from 21.3% to 24.1%

among the three GCMs, magnitudes that are compara-

ble to the internal variability of 30-yr averages (Table

3). Consistent with such modest signal-to noise ratio,

the precipitation histograms overlap considerably, al-

though they are statistically different from each other

(.99% with a Kolmogorov–Smirnov test) for the large

ensemble of ECHAM and MRI runs (Fig. 6, middle).

Conversely, the histograms are statistically indistinguish-

able, however, for the smaller ensemble of CAM runs.

Concerning interpretation of the observed precipitation

change, the11.6% increase resides well within the range

of model internal variability thus suggesting low de-

tectability. The detection of precipitation change is fur-

ther complicated by various systematic observational

shortcomings in estimating the true observed precipi-

tation change over the last century, primarily due to

a limited and irregularly distributed station network

FIG. 5. Comparison of climatological evapotranspiration ratio (AET/P), which is the complement to the runoff ratio, to aridity (PET/P)

at grid points composing the UCRB for AGCMs (red dots) and a historical VIC simulation forced by observed meteorological variability

during 1981–2010 (open black circles). The VIC results serve as an observational reference. The scatter shows how the evapotranspiration

ratio and aridity vary across the UCRB for each model.
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(e.g., J. Barsugli et al. 2019, unpublished manuscript).

Even in the case that this could be known accurately, each

of the models indicates that a forced signal could be

readily masked by internal variability. We thus judge a

climate change signal in UCRB precipitation since the

late nineteenth century to be undetectable at this time.

The streamflow signal (Fig. 6, bottom), although pro-

duced through a full energy and water balance at the

surface, can be thought of as convolving each model’s

land surface sensitivity principally with its temperature

and precipitation changes. All models agree that meteo-

rological changes in the Colorado River act to reduce

flow. The magnitude of reduction is appreciable, and is

close to the observed decline of 213% when averaged

across the threemodelswith a range in signals from26.9%

to 217.8%. The signal-to-noise ratio lies between 1 and 2

for streamflow, as compared to about unity for pre-

cipitation (see Table 3), and the streamflow histograms are

statistically different from each other for each GCM. This

indicates greater detectability for streamflow compared to

precipitation due to the contribution of the highly detect-

able warming signal to runoff decline. We thus judge a

13% decline in UCRB flow over the last century to be

marginally detectable (at a 90% level), and that the

FIG. 6. Histograms for simulated UCRB 1981–2010 30-yr-averaged (top) temperature (8C), (middle) precipitation (mm), and (bottom)

runoff (mm). Factual experiments (red curves) and counterfactual experiments (blue curves) are shown for (left) CAM5, (center)

ECHAM5, and (right) MRI3.2. The ‘‘rug’’ of tick marks shows individual ensemble members. The probability distribution functions are

nonparametric curves constructed using the R software program, which utilizes a kernel density estimation and a Gaussian smoother.
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observational measurements of streamflow decline are

unlikely to be due to natural variability alone. The notion

of detectability during the instrumental record of a true

change in UCRB streamflow must be tempered, however,

by the fact that our model-based estimates of noise are

only with respect to atmospheric variability, and thus

conservative. Given the considerable decadal variability in

flow volumes measured during the last century, and also

from indications for strong decadal variability in the

aforementioned nineteenth-century flow reconstructions,

confidence of a detected change is judged to be low.

To provide finer granularity of simulated hydro-

climate changes, we present in Fig. 7 the subbasin-scale

responses for each GCM. Shown are the ensemble mean

differences of factual minus counterfactual experiments

(i.e., their forced signals). The pattern of temperature

change is homogenous over the basin (Fig. 7, top) con-

sistent with a large-scale warming pattern that encom-

passes the entire continental United States (see the

online supplemental material). The pattern of pre-

cipitation changes (Fig. 7, middle) is more structured,

consisting of a north–south gradient having largest de-

clines over the southern basin. This dryness is part of a

regionally focused precipitation reduction covering

much of the U.S. Southwest that intrudes into the

UCBR in each of the three models (see the online

supplemental material). The pattern of streamflow

changes (Fig. 7, bottom) shows declines in all subbasins

(Fig. 7, bottom) and in all models, although having a

more uniform pattern in ECHAM and MRI as com-

pared with the more spatially variable pattern of CAM.

Several factors can account for the differences in

streamflow responses among the three models. One

arises from diverse land surface sensitivities of each

model to temperature and precipitation. A second

originates from the differences inmeteorological forcing

over the UCRB generated by each model. A few qual-

itative insights on these effects can be gleaned from

Fig. 7, whereas a quantitative evaluation is provided in

section 5. Notably, the larger flow declines in ECHAM

and MRI simulations are plausibly due to their larger

precipitation declines, relative to those in CAM. The

magnitude of this effect will depend on the precipitation

elasticity of streamflow, which could differ among the

models. Applying an elasticity of ;2 based on obser-

vational data for this region (e.g., Sankarasubramanian

and Vogel 2002, 2003), a 24.1% precipitation change

signal in ECHAM versus 21.3% in CAM would

imply streamflow change signals of 28.2% and 22.6%,

respectively.

Streamflow sensitivity to temperature is also an im-

portant factor. Anticipating the more detailed analysis

in section 5, one can already infer the role of warming by

examining the CAM responses in Fig. 7. It is clear that

its pattern of streamflow change does not resemble its

pattern of temperature change, but instead more closely

resembles its pattern of precipitation change (see Fig. 7,

left column). If temperature were the primary driver of

flow change, as some empirical studies propose, one

would have expected the greatest streamflow decline in

CAM to occur over the Upper Green basin where the

greatest warming occurs. Instead, that catchment shows

little streamflow change. The small signal of pre-

cipitation increases (;1%) in the Upper Green appears

to be sufficient to offset effects of 1.58C warming as

concerns flow change. Implied here is a sensitivity to

warming that is appreciably less than the values

from 210% to 215%C21 that are suggested from em-

pirical studies. Alternatively, it is also possible that

streamflow, at least in the Upper Green of CAM, is

highly sensitive to precipitation—appreciably greater

than an elasticity of 2. To clarify these issues, we

therefore next diagnose runoff sensitivity to the separate

effects of temperature and precipitation change.

5. UCRB streamflow sensitivity to temperature
and precipitation change

To quantify the streamflow sensitivity to long-term

meteorological change, we plot in Fig. 8 the scatter re-

lationship between flow and precipitation percentage

changes based on the factual minus counterfactual dif-

ferences. The results indicate streamflow changes to be

strongly constrained by precipitation changes in each

GCM, despite various peculiarities of each model’s hy-

droclimates discussed in prior sections. Furthermore,

their covariations are linear, having correlations ex-

ceeding 0.9. As such, the precipitation elasticity of

streamflow can be reliably estimated by calculating the

slope of the linear fit to the scatter (red lines in Fig. 8)

the values of which are 2.4, 2.0, and 2.7 for CAM,

ECHAM, and MRI, respectively (see Table 4). Such

precipitation elasticity on centennial time scales is close

to that derived from statistics of interannual variability

TABLE 3. Differences in 1981–2010 temperature (8C), pre-

cipitation (%), and streamflow (%) averaged over the UCRB for

factual minus counterfactual experiments. Uncertainty is esti-

mated from the standard deviation of 30-yr means from the

counterfactual runs.

Model

d temperature

(8C)
d precipitation

(%)

d streamflow

(%)

CAM5 1.4 6 0.1 21.3 6 3.9 26.9 6 9.0

ECHAM5 1.2 6 0.1 24.1 6 3.1 212.1 6 6.7

MRI3.2 1.2 6 0.1 23.6 6 2.6 217.8 6 8.3

OBS 1.1 1.6 213.1
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of observed streamflow and precipitation (e.g.,

Sankarasubramanian and Vogel 2003) and is also close

to that derived from idealized LSM experiments sub-

jected to specified precipitation anomalies (e.g., Vano

et al. 2012, 2014). The key point here is that precipitation

change is critical for determining the long-term response

of the Colorado River to climate change given this

twofold amplification via elasticity.

The scatter relationships in Fig. 8 can be further

diagnosed to also quantify the sensitivity of stream-

flow to temperature change. Note that the linear fit

for each of the three scatterplots has a negative y

intercept, indicating that flow is depleted even when

precipitation change is zero. That depletion is re-

flective of long-term warming effects that occur

in each model. When the y intercept is scaled for

each model’s temperature change (see Table 3), the

resulting temperature sensitivities of streamflow are

22.5%, 23.0%, and 26.5% 8C21 for CAM, ECHAM,

and MRI, respectively. They are considerably lower than

empirical estimates of UCRB streamflow sensitivity

based on historical data analysis (e.g.,McCabe et al. 2017)

and also on the low end of LSM flow sensitivity to spec-

ified warming (e.g., Vano et al. 2012, 2014). For the

FIG. 7. Climate change signals over the UCRB for (top) temperature, (middle) precipitation (%), and (bottom) runoff (%). The signals

are based on differencing factual minus counterfactual experiments for 1981–2010 from the (left) CAM5, (center) ECHAM5, and (right)

MRI3.2models. Results are plotted at a subbasin scale for the eight principal hydrologic catchments. The precipitation and runoff changes

are expressed as a percentage departure relative to each subbasin’s counterfactual 1981–2010 climatology.
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roughly 1.18C observed warming that has occurred over

the last century, these high-resolution AMIP-derived

sensitivities imply a temperature-induced streamflow

decline of ;2.8%–7.2%. Note that these estimates of

temperature sensitivity are for hydroclimate changes

during the last century and may not be representative of

future temperature–streamflow relationships.

Despite the high correlation of runoff and pre-

cipitation changes, the scatter around the linear fit is

large when compared to the magnitude of the climate

change signal itself. This scatter is a consequence of the

different sequences of weather that are simulated in

each ensemble member. Recognizing that observed es-

timates of runoff and precipitation change over the in-

strumental record constitute but a single point in that

scatter diagram, there is considerable sampling un-

certainty in knowing the true relationship between hy-

drologic and meteorological changes, even were each

perfectly measured.

Figure 9 shows the spatial distribution of streamflow

sensitivity based on analysis of the scatter relation-

ships generated for each subbasin. Regarding tem-

perature sensitivity (Fig. 9, top), reduced flow due to

warming occurs across the entire UCRB in all models,

although appreciable differences exist among the

models in their spatial structures. For example, CAM

shows a maximum sensitivity (;24% 8C21) in the

Colorado headwaters (eastern subbasins) where its

maximum runoff production occurs. By contrast,

ECHAM exhibits minimum temperature sensitivity

(less than 22% 8C21) in those same areas. The MRI

temperature sensitivity is also greatest in these high-

elevation eastern subbasins, but with large magnitudes

approaching 210% 8C21. Indeed, such large temper-

ature sensitivities are mostly responsible for the

overall high basin-averaged temperature sensitivity in

MRI (see Table 4). Yet, we note that the MRI model

was shown to produce erroneously little flow in these

high mountain energy-limited regimes, contrary to

observations (see Fig. 5). Owing to such severe cli-

matological biases in its streamflow, the very high

temperature sensitivity in those areas (and also its high

temperature sensitivity for UCRB runoff overall) is

judged to be unreliable.

For subbasin precipitation sensitivity (Fig. 9, bottom),

CAMresults indicate the highmountains of the Colorado

River headwaters to be most sensitive to precipitation

changes, with elasticities approaching 3. By contrast,

neither ECHAM nor MRI models exhibit compara-

bly strong spatial heterogeneity in their precipitation

FIG. 8. Scatter relationship between UCRB runoff (y axis) vs UCRB precipitation differences of the 1981–2010 factual minus coun-

terfactual experiments of (left) CAM5, (center) ECHAM5, and (right) MRI3.2. All values are averages for the entire UCRB. The

precipitation and runoff anomalies are expressed as percentage departures relative to the counterfactual 1981–2010 climatology.

TABLE 4. The temperature sensitivity and precipitation elasticity

of streamflow averaged over the UCRB from analysis of the dif-

ferences between factual minus counterfactual experiments. The

last column is the correlation of the factual minus counterfactual

changes in streamflow vs precipitation for the UCRB.

Model

T sensitivity

(% 8C21)

P

elasticity

Correlation

dQ vs dP

CAM5 22.5 2.4 0.91

ECHAM5 23.0 2.0 0.97

MRI3.2 26.5 2.7 0.93
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elasticities. Overall in CAM, these eastern catchments

of high elasticity (.2.5) are locations of maximum cli-

matological runoff production and are also the regions

most sensitive to temperature change. Yet, owing to

such locally high elasticity, even small precipitation

changes would drive large flow responses that could

easily overwhelm reductions in streamflow even under

strong warming.

Multiplying these streamflow sensitivities with their

corresponding temperature and precipitation changes (see

Fig. 7), we present in Fig. 10 the individual contributions of

temperature and precipitation to total flow change. The

resulting linear additive reconstruction of total streamflow

change (Fig. 10, top) closely reproduces the actual GCM

changes (cf. Fig. 7 and Fig. 10) thereby affirming the merit

of diagnosing each meteorological effect separately. The

results demonstrate that diminishedUpperColoradoRiver

streamflow is primarily due to the effects of climate

change–induced precipitation reductions. This is even true

in CAM, which experienced the weakest precipitation re-

duction signal among the three GCMs, affirming the im-

portance of precipitation elasticity. A second key result is

that each of the GCM simulations indicates streamflow

to be reduced by both a reduction in precipitation and a rise

in temperature. Their combined effect thus leads to a

substantially greater reduction in Colorado River flow

volumes than each effect alone.

Last, we address the structural uncertainty in our as-

sessment of the century-long decline in Colorado River

flow and attempt to explain the appreciable range among

FIG. 9. Runoff sensitivity over the UCRB to centennial-scale (top) temperature change (% change in runoff per 8C) and (bottom)

precipitation change (% change in runoff/% change in precipitation; i.e., the runoff elasticity) from (left) CAM5, (center) ECHAM5, and

(right) MRI3.2.
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the model signals (from 26.9% to 217.8%). Recall

that the results of Fig. 10 intertwine two critical factors

driving the Colorado River response to climate change

over the last century, the first involving each model’s

meteorological response to long-term climate forcing and

the second involving eachmodel’s land surface sensitivity

to the associated meteorological changes. In aggregate, it

is the manner in which these factors differ among the

models that accounts for the structural uncertainties in

streamflow responses. Concerning the first factor, we

adopted a view that the meteorological changes in the

three models have equal plausibility for reasons detailed

in section 3. Concerning the second factor, section 3 did

reveal distinct biases in water/energy balances that could

bear upon land surface sensitivity. The Budyko-based

diagnosis indicated CAM to be superior based on several

climatological metrics, informing our view that its more

realistic relationship between aridity and runoff pro-

duction would yield a more realistic streamflow response

to changes in aridity.

Given these considerations, we repeat the calculations

of Fig. 10 but convolve the CAM sensitivity alone with

FIG. 10. UCRB total runoff response based on differencing factual minus counterfactual experiments for 1981–2010: (top) total runoff

change, (middle) temperature change effect on runoff, and (bottom) precipitation effect on runoff from (left) CAM5, (center) ECHAM5,

and (right) MRI3.2. The component effects are calculated by multiplying each model’s temperature and precipitation changes (Fig. 7) by

its corresponding sensitivities (Fig. 9). Results are plotted at a subbasin scale for the eight principal hydrologic catchments. The runoff

changes are expressed as a percentage departure relative to each subbasin’s counterfactual 1981–2010 climatology.
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each of the three GCM’s precipitation and temperature

changes. The results of Fig. 11 can thus be viewed as

comprising three estimates of streamflow change arising

when the same land model (CAM) is subjected to three

different scenarios of temperature and precipitation

change. The principal features are not qualitatively dif-

ferent from those of Fig. 10 with basin-averaged stream-

flow declines of 26.4%, 213.9%, and210.9% for CAM,

ECHAM, and MRI meteorological changes, respectively.

6. Summary and concluding remarks

Colorado River flow has declined by roughly 20%

during the instrumental record, as based on estimates of

naturalized Lees Ferry flow. Using a high-resolution

multimodel approach, we demonstrate that climate change

forcing has acted to reduce streamflow from the Upper

Colorado River basin during this period by about 10%

(with uncertainty range of 6%–14% reductions). Our

results thus indicate that about one-half of the observed

flow decline during the instrumental period has likely

resulted from long-term climate change.

A combination of factors stemming from the UCRB’s

hydrologic sensitivity to changes in meteorological con-

ditions account for how, and by how much, climate

change has induced flow declines. Each of three different

global models used herein indicate that climate change

forcing during the last century has increased surface

temperature (;11.28C) and decreased precipitation

(;23%) over the UCRB. The effect of precipitation

FIG. 11. As in Fig. 10 except that the component effects are calculated bymultiplying eachmodel’s temperature and precipitation changes

(Fig. 7) by the CAM5 sensitivities only (Fig. 9).
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change is shown to have been the most consequential

factor owing to an amplified impact on flow resulting

from precipitation elasticity of ;2. Warming has also

driven runoff declines, although as a secondary factor

over the past century owing to a modest 22.5% 8C21

temperature sensitivity based on our bestmodel-derived

estimate. We thus find that only about one-third of the

overall climate change signal in Colorado River flow

decline has resulted from warming, whereas about two-

thirds of the climate change signal has resulted from

precipitation decline.

It is useful to reconcile our findings with several recent

studies that examined causes for low Colorado River

flow since 2000, the so-called Millennium drought pe-

riod. Udall and Overpeck (2017) used empirical data to

estimate that about one-third of the anomalously low

flow during 2000–14 (corresponding to a 19% deficit

relative to twentieth-century climatology) was due to

high temperatures. Based on their analyzed surface

temperature anomaly of 0.98C (see their Table 2),

a 27% 8C21 runoff sensitivity can be empirically in-

ferred. In a different approach, Xiao et al. (2018) used

VIC simulations forced by an updated version ofHamlet

and Lettenmaier (2005) meteorological analyses for

1916–2014 from which they determined that slightly

more than one-half of the 2000–14 low flow was due to

rising temperatures. Since their LSM simulations

yielded only a 14% decline in Colorado River flow

(relative to their model’s baseline historical simulation),

a 27% 8C21 runoff sensitivity also emerges from their

results. In both studies, the authors found a substantial

fraction (from one-half to two-thirds) of low Colorado

River flow during 2000–14 was due to precipitation

deficits, the cause for which was subsequently found to

be mainly internal atmospheric variability associated

with natural fluctuations of tropical Pacific sea surface

temperatures (Lehner et al. 2018). To synthesize, this

collection of recent work indicates a substantial portion

of the Millennium low flow regime in the UCRB has

resulted from natural variability, but with a human-

induced warming acting to also significantly deplete the

river. Our own results, although not strictly addressing

this drought event, are in qualitative agreement with a

narrative that warming has exacerbated the low flow

conditions since 2000.

The question remains open, however, with regard to

the magnitude of that warming effect. The VIC model

sensitivity to warming found in Xiao et al. (2018) is

similar to that reported for a different set of VIC ex-

periments examined by Vano et al. (2014). That study

included intercomparison of eight different LSMs

subjected to idealized UCRB warming the results of

which indicated sensitivities at Lees Ferry ranging from

about23% to28% 8C21. One of the stated purposes of

our work was to overcome various limitations in such

offline LSM experiments, and to this end we used cou-

pled land–atmosphere GCM experiments to provide a

more realistic treatment of surface energy and water

balance adjustments to climate change forcing. Our best

estimate of a 22.5% 8C21 temperature sensitivity is on

the low end of these LSM results and is likewise ap-

preciably lower than Xiao et al. (2018) and Udall and

Overpeck (2017) based on their studies of the Millen-

nium drought. Regarding the latter empirical study,

sampling uncertainty can be an important limitation in

determining the temperature sensitivity from observa-

tions alone. For instance, the correlation between an-

nual temperature and UCRB flow is only about 20.5

(e.g.,McCabe et al. 2017). Consistent with such amodest

statistical linkage, our own examination of the Millen-

nium drought that includes data thru 2018 (see time

series of Fig. 1) indicates a more substantial fraction of

the Lees Ferry flow deficit to be attributable to pre-

cipitation deficits (;80%) while temperature may have

contributed only about 20% to the flow deficit. The in-

clusion of four additional years to the Millennium

drought diagnosis reduces the estimated temperature

sensitivity to 23% 8C21. This is not to argue that the

latter is more representative of the true sensitivity, but

merely to illustrate the considerable uncertainty in em-

pirical approaches, some reasons for which are further

pursued in J. Barsugli et al. (2019, unpublished manu-

script). A more comprehensive study on the causes for

the UCRB Millennium drought is clearly required, and

because all trends calculated over the last century end in

the Millennium drought event, the results would also

bear on interpretation of the long-term flow decline.

We began our paper with the proposition that at-

tribution would be tantamount to skillful prediction if

Colorado River flow decline over the instrumental

period had resulted principally from surface warm-

ing. To test that premise, we undertook a compre-

hensive examination of the past with a goal to better

informing expectations of the future. It is our con-

clusion that temperature information alone may offer

rather limited predictive value for future Colorado

River flow, a consequence of our evidence for a weak

temperature sensitivity derived thru analysis of a

vetted multimodel large ensemble. For instance,

only a 25% streamflow diminution would occur

under a scenario of 28C additional warming by the

middle of the twenty-first century. Our findings show

that such an impact could be readily masked by

the inherent noise of internal variability. The mes-

sage of our analysis is very clear—precipitation var-

iations of the magnitudes that can arise naturally on
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multidecadal time scales would easily overwhelm

such a warming effect for the foreseeable future given

the large precipitation elasticity (.2).

A consequence of our finding is that the great matter

confronting efforts to anticipate future Colorado River

flow is how precipitation will change rather than how

temperature will change. To be sure, the three models

used herein were unanimous in indicating a drying effect

of century-long climate change to date. But whether

such an effect will prevail and grow as warming accel-

erates is unclear. We note that the median of CMIP5

model projections for RCP4.5 and RCP8.5 are for in-

creases in annual precipitation over Colorado by the

middle of the twenty-first century (Lukas et al. 2014;

Ayers et al. 2016). If those projections come to pass, then

Colorado River flow would plausibly increase, despite

the further strong warming that is also anticipated.

Several aspects of the precipitation change problem

require further study, however. For instance, one key

aspect toward predicting UCRB precipitation on such

long time-scales involves the pattern of sea surface

temperature warming in the tropical Pacific. The change

pattern to date has deviated significantly from that

simulated in CMIP models (Hoerling et al. 2010), and a

science challenge is to understand why and what impli-

cations this has for reliability of existing projections over

the UCRB. It should also be noted that our estimate of

the basin’s runoff sensitivity to temperature rise was for

warming over the last century—it is conceivable that the

more substantial warming expected over coming de-

cades may evoke a different sensitivity of basin runoff.

The study has addressed several sources of un-

certainty in understanding how Colorado River

streamflow responds to climate change [see Vano et al.

(2014) for a list of many such uncertainties]. Our global

model experiments were conducted at a nominally high

spatial resolution (;50 km) so as to improve the rep-

resentation of how topography organizes and controls

the basin’s hydroclimate. Note that Vano et al. system-

atically investigated the effects of increased resolution

on hydrologic sensitivity and found that higher spatial

resolution results in weaker temperature sensitivity.

Therefore, the relatively low temperature sensitivity of

streamflow seen in our models is not likely due to course

scale. A more robust appraisal of the realism of land

surface physics was applied than in prior studies, helping

to expose strengths and weaknesses of our models’

streamflow sensitivity to meteorological change. We

employed fully coupled atmosphere–land modeling

methods to avoid some of the biases that are introduced

via techniques of statistical downscaling and the execu-

tion of offline hydrologic models. Also, our focus was on

historical streamflow change rather than projections for

the late twenty-first century (Christensen et al. 2004;

Milly et al. 2005; Christensen and Lettenmaier 2007).

Our experiments were therefore subjected to known

oceanic and radiative forcing changes in the in-

strumental record during which the Colorado River was

observed to decline. This distinction from studies that

relied on model data derived from CMIP experiments is

that the patterns of sea surface temperature change in

those models appreciably differ from observations,

leading to significant regional biases in North American

climate and their sensitivity to climate change (Barsugli

et al. 2006; Hoerling et al. 2010; Shin and Sardeshmukh

2011). However, using known changes in SSTs and

GHGs (rather than projected values) allows for greater

confidence in our assessment relative to future looking

studies.

While having accommodated sources of uncertainty

and addressed some of the ambiguities arising from

model-based assessments, a full understanding of the

century-long decline in Colorado River flow awaits

treatment of various additional issues. One concerns

the sensitivity of snowpack to climate change, and its

role in determining the character of Colorado River

sensitivity. Snow is especially relevant for the season-

ality of Colorado River flow, which, however, was not a

topic of this paper. Yet, seasonality in precipitation is

believed relevant for water-year flow volumes given

that cool season (October–April) precipitation ex-

plains 70% of the variability of UCRB water-year

runoff since 1960 (Woodhouse et al. 2016). Observa-

tions indicate that snow water equivalent (SWE) on

1 April in the UCRB has declined during 1955–2014,

and historical LSM runs indicate a longer-term SWE

decline since the early twentieth century (Mote et al.

2018). It is unclear if these declines are symptomatic

of a warming effect in the basin, and/or are due to

precipitation declines—at least during the snow-

accumulation season. It is important to emphasize

that the true centennial-scale change in UCRB pre-

cipitation is not well known at this time (J. Barsugli

et al. 2019, unpublished manuscript), and certainly not

to the accuracy required for quantitative study of im-

pacts on SWE and streamflow. Nor has the seasonality

of its long-term changes been extensively explored, al-

though this issue has been examined for decadal vari-

ability (Udall and Overpeck 2017). Continued research

on the nature of historical observations including a

reanalysis for long periods spanning the last century is

thus important in its own right, but also toward better

informing and more realistically constraining model

investigations.

Land-use and land-cover changes over the United

States as a whole contribute to local and regional
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changes in climate and water resources (Wuebbles et al.

2017). Perhaps most important is how vegetation cover

and structure, forest growth, and land management

practices such as crop versus wood harvest areas have

changed in the UCRB over the last century. Neither of

these factors are treated in this study where we used

identical land surface/land-use conditions in our factual

and counterfactual experiments. Bearup et al. (2014)

and Livneh et al. (2015a) provide some evidence for

hydrologic effects of forest transpiration loss on runoff

that may have arisen in recent decades as a result of an

infestation by bark beetles in the UCRB. However,

these studies suggest that transpiration loss could serve

to increase available water, which would not exacerbate

the basinwide drying of interest. Additional evidence for

land-use effects, although tied to remote land surface

changes outside the UCRB, concerns dust on snow and

the resulting consequences for Colorado River runoff

efficiency, perhaps accounting for a 5% reduction in

flows (Painter et al. 2007, 2010). A treatment of how

land-use/land-cover changes over the entire UCRB

have impacted Colorado River flows during the last

century remains to be conducted.

Given these and other limitations, the current study

cannot be viewed as comprehensive or as providing a

definitive explanation for the decline in the Colorado

FIG.A1.UCRBclimatological (top) runoff and (bottom) runoff efficiency forVIC historical simulations of 1981–

2010 forced by observed temperature and precipitation variability. Results are plotted at a subbasin scale for the

eight principal hydrologic catchments that contribute to UCRB runoff. The runoff results are expressed as a

percentage of each subbasin’s contribution to the total basin runoff. Runoff efficiency, also plotted as a percentage,

is the ratio of a subbasin’s runoff to its precipitation. The VIC simulation is forced with Livneh et al. (2015b)

meteorological data.
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River over the instrumental period. It does, however,

offer a physically based explanation for the observed

century-long decline in Colorado River streamflow

within a new framework of the river’s sensitivity to

meteorological change. We recognize that explaining

this decline is urgent because Lakes Mead and Powell

are now approaching levels (Barnett and Pierce 2008)

that may imminently require delivery curtailments, as

per the 2007 Interim Guideline Agreement for handling

water shortages on the river (https://www.usbr.gov/lc/

region/programs/strategies.html). To date, the impact of

waning streamflow has been buffered by drawing down

these reservoirs, although it is evident that the storage

systems would become less of a bulwark against water

shortage if the streamflow downturn persists. By providing

this new approach toward assessing the sensitivity of the

Colorado River to climate change, it is hoped that our

results in combination with other studies will more ro-

bustly inform expectations about water resource abun-

dance for coming decades and aid deliberations on interim

guideline revisions, the current agreement ofwhich expires

in 2026.
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APPENDIX

Land Surface Model Simulations

The VIC land surface model experiment is forced by

gridded observed daily precipitation, maximum and

minimum temperature, and wind speed based on Livneh

et al. (2015b). Using soil parameters from Livneh et al.

(2013, 2015b), theVICmodel was built at a 0.58 resolution
(;50 km) to conform with the AGCM scales, and we

summarize its hydroclimate for the 1981–2010 period.

The VIC simulation spans 1915–2015, and the historical

experiments have been conducted at both 1/28 and 1/168
spatial resolution. The statistics of interannual variability

and the correlation of the simulated historical annual flow

with the natural Lees Ferry time series are very similar for

these two resolution settings (Figs. A1 and A2).
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